Senin, 07 September 2015

Operasi Aritmatika dan Logika


yuh nulis maning.... 
langsung aja kesuen 

 Operasi Aritmatika dan Logika

 1. Bilangan Biner
          Bilangan biner adalah bilangan yang memiliki basis 2. 
Anggota bilangan biner antara lain 0 dan 1. ( r = 2 ).
Dalam penulisan biasanya ditulis seperti berikut 1010012, 10012, 10102, dll.

Operasi Aritmetika pada Bilangan Oktal

a.    Penjumlahan
Dasar penujmlahan biner adalah :
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0         ~>        dengan carry of 1, yaitu 1 + 1 = 2, karena digit terbesar ninari 1, maka harus dikurangi dengan 2 (basis), jadi 2 – 2 = 0 dengan carry of 1
contoh :
    (A)                 (B)
1111 + 10100 =  100011             
atau dengan langkah :
(A)      (B)
1 + 0                     = 1
1 + 0                     = 1
1 + 1                     = 0 dengan carry of 1
1 + 1 + 1               = 0
1 + 1                     = 0 dengan carry of 1
Hasil   =  100011

b.    Pengurangan
Bilangan biner dikurangkan dengan cara yang sama dengan pengurangan bilangan desimal. Dasar pengurangan untuk masing-masing digit bilangan biner adalah :
0 - 0 = 0
1 - 0 = 1
1 - 1 = 0
0 – 1 = 1         ~>        dengan borrow of 1, (pinjam 1 dari posisi sebelah kirinya).
Contoh :
    (A)                 (B)
11101 - 1011 = 10010
atau dengan langkah :
 (A)     (B)
1 – 1               = 0
0 – 1               = 1   dengan borrow of 1
1 – 0 – 1         = 0
1 – 1               = 0
1 – 0               = 1
            Hasil   = 10010

c.    Perkalian
Dilakukan sama dengan cara perkalian pada bilangan desimal. Dasar perkalian bilangan biner adalah :
0 x 0 = 0
1 x 0 = 0
0 x 1 = 0
1 x 1 = 1
Contoh :
Desimal
Biner

   14
   12  x
   28
 14

                  +
 168


             1110
             1100  x
             0000
           0000
         1110
       1110      +
     10101000


d.    Pembagian
Pembagian biner dilakukan juga dengan cara yang sama dengan bilangan desimal. Pembagian biner 0 tidak mempunyai arti, sehingga dasar pemagian biner adalah :
0 : 1 = 0
1 : 1 = 1
Desimal
Biner
5     / 125 \ 25
         10 -
            25
            25 -
              0
              101 / 1111101 \ 11001
                        101 -
                           101
                            101 -
                                 0101
                                    101 -
                                         0



3. Bilangan Oktal
            Sistem bilangan Oktal menggunakan 8 macam symbol bilangan berbasis 8 digit angka, yaitu 0 ,1,2,3,4,5,6,7.
Position value system bilangan octal adalah perpangkatan dari nilai 8.
Contoh :                           
12(8) = …… (10)
            2 x 8 0 = 2
            1 x 8 1 = 8
   10
Jadi 10 (10)

Operasi Aritmetika pada Bilangan Oktal
a.    Penjumlahan
Langkah-langkah penjumlahan octal :
-          tambahkan masing-masing kolom secara desimal
-          rubah dari hasil desimal ke octal
-          tuliskan hasil dari digit paling kanan dari hasil octal
-          kalau hasil penjumlahan tiap-tiap kolom terdiri dari dua digit, maka digit paling kiri merupakan carry of untuk penjumlahan kolom selanjutnya.
Contoh :
Desimal
Oktal

     21
     87 +
  108

  25
127 +
154
                    5 10  + 7 10            = 12 10   =      14 8
                    2 10  +  2 10 + 1 10 = 5 10    =         5 8
                     1 10                      = 1 10     =        1 8





b.    Pengurangan
Pengurangan Oktal dapat dilaukan secara sama dengan pengurangan bilangan desimal.
Contoh :
Desimal
Oktal

   108
     87 -
     21

 154
 127 - 
   25
                    4 8  - 7 8      + 8 8     (borrow of) = 5 8
                    5 8  - 2 8  - 1 8                                    = 2 8  
                    1 8  - 1 8                                     =  0 8



c.    Perkalian
Langkah – langkah :
-          kalikan masing-masing kolom secara desimal
-          rubah dari hasil desimal ke octal
-          tuliskan hasil dari digit paling kanan dari hasil octal
-          kalau hasil perkalian tiap kolol terdiri dari 2 digit, maka digit paling kiri merupakan carry of untuk ditambahkan pada hasil perkalian kolom selanjutnya.
Contoh :
Desimal
Oktal

   14
   12 x
    28
 14   +
  168    

                 16
                 14 x
                  70
                                     4 10 x 6 10     = 24 10  = 30 8
                                     4 10 x 1 10 + 3 10 = 7 10 = 7 8

                  16
                 14 x
                  70
                16
                                 1 10 x 6 10    = 6 10    = 6 8
                                 1 10 x 1 10    =  1 10   = 1 8

                 16
                 14 x
                  70
                16 +
               250
                                       7 10 + 6 10  = 13 10  = 15 8
                                        1 10  +  1 10  = 2 10 = 2 8




d.    Pembagian
Desimal
Oktal
   12 / 168  \  14
 12 -   
             48
             48 –
               0
               
 14 / 250 \ 16
         14 -             14 8  x  1   = 14 8
         110
          110 -           14 8 x 6 = 4 x 6 8 = 30 8
              0                               1 8 x 6   6 8 +
                                                             110 8




4. Bilangan Hexadesimal
Sistem bilangan Oktal menggunakan 16 macam symbol bilangan berbasis 8 digit angka, yaitu 0 ,1,2,3,4,5,6,7,8,9,A,B,C,D,Edan F
Dimana A = 10, B = 11, C= 12, D = 13 , E = 14 dan F = 15
Position value system bilangan octal adalah perpangkatan dari  nilai 16.
Contoh :
C7(16) = …… (10)
  7 x 16 0  =    7 
 C x 16 1  = 192
                   199
Jadi 199 (10)


Operasi Aritmetika Pada Bilangan Hexadesimal
a.    Penjumlahan
Penjumlahan bilangan hexadesimal dapat dilakukan secara sama dengan penjumlahan bilangan octal, dengan langkah-langkah sebagai berikut :
Langkah-langkah penjumlahan hexadesimal :
-          tambahkan masing-masing kolom secara desimal
-          rubah dari hasil desimal ke hexadesimal
-          tuliskan hasil dari digit paling kanan dari hasil hexadesimal
-          kalau hasil penjumlahan tiap-tiap kolom terdiri dari dua digit, maka digit paling kiri merupakan carry of untuk penjumlahan kolom selanjutnya.
Contoh :
Desimal
hexadesimal

 2989
  1073  +
  4062

BAD
431 +
FDE
        D 16 + 1 16  = 13 10  + 110 = 14 10 = E 16
        A 16 + 3 16   = 10 10  + 3 10 = 13 10    =D 16
         B16  + 4 16 = 1110 + 4 10 = 15 10 = F 16




b.    Pengurangan
Pengurangan bilangan hexadesimal dapat dilakukan secara sama dengan pengurangan bilangan desimal.




Contoh :
Desimal
hexadesimal

 4833
1575  -
3258

12E1
   627 -
CBA
        16 10 (pinjam) + 1 10  - 710      = 10 10 = A 16
        14 10 - 7 10 -   - 1 10 (dipinjam) = 11 10  =B 16
         1610  (pinjam) + 2 10  - 610        = 12 10 = C 16

          1 10 – 1 10 (dipinjam)  0 10 = 0 16



c.    Perkalian
Langkah – langkah :
-          kalikan masing-masing kolom secara desimal
-          rubah dari hasil desimal ke octal
-          tuliskan hasil dari digit paling kanan dari hasil octal
-          kalau hasil perkalian tiap kolol terdiri dari 2 digit, maka digit paling kiri merupakan carry of untuk ditambahkan pada hasil perkalian kolom selanjutnya.

Contoh :
Desimal
Hexadesimal

   172
     27 x
   1204
    344 +
  4644  


                 AC
                 1B x
                764
                              C 16 x B 16     =12 10 x 1110= 84 16
                            A16 x B16 +816 = 1010 x 1110+810=7616

                 AC
                 1B x
                764
                AC
                                 C16 x 116  = 1210  x 110 =1210=C16
                                 A16 x 116  =  1010  x110 =1010=A 16
                 AC
                 1B x
               764
               AC +
               1224
                         616 + C16  = 610 + 1210 = 1810 =12 16
                         716+A16 +116 = 710 x 1010 + 110=1810 = 1216







D. Pembagian
Contoh :
Desimal
hexadesimal
27 /  4646  \  172
27-   
            194
            189 –
               54
               54 –
                 0

 1B / 1214 \ AC
         10E -  <~  1B16xA16  = 2710x1010=27010= 10E16
         144
         144-   <~   1B 16 x C16 = 2710 x 10 10 = 3240 10
              0                                                   =14416
                                                                    



Selamat Belajar… 

Tidak ada komentar:

Posting Komentar